Methodological Proposal for AI–Assisted Academic Writing: The CO–STAR Framework

Authors

DOI:

https://doi.org/10.46219/rechiem.v17i3.206

Keywords:

Artificial intelligence, Ethics of science, Teaching method innovations, Litmaps, Consensus

Abstract

This paper presents a methodological approach designed to support the writing of academic essays through the pedagogical use of Artificial Intelligence (AI) tools, specifically ChatGPT integrated with the CO–STAR framework (Context, Objective, Style, Tone, Audience, and Response) for prompt design. The study follows an exploratory design focused on the formative implementation of this approach, documented through an instrumental case study involving two doctoral students in Mathematics Education. The process unfolded across four phases: (1) diagnosis of academic writing skills, (2) prompt design using CO–STAR, (3) application during synchronous sessions, and (4) evaluation through oral presentations. The findings show improvements in the organization of ideas, academic register, textual clarity, and the development of a critical use of AI. Additionally, the study identifies learning gains related to academic integrity, source evaluation, and the articulation of the author’s academic stance. It is concluded that this approach fosters reflective and ethical writing practices while promoting a critical relationship with emerging technologies. It also demonstrates potential for transfer to other educational settings and opens new lines of inquiry on academic writing, AI, and research training in mathematics education.

Downloads

Download data is not yet available.

Author Biographies

José Luis Morales Reyes, Pontificia Universidad Católica de Valparaíso

Doctoral candidate in Didactics of Mathematics at the Pontificia Universidad Católica de Valparaíso and holder of a Master’s degree in Educational Mathematics from CINVESTAV (Mexico), completed through full-time, on-campus study. In 2021, he was awarded an Honorable Mention of the Simón Bolívar Award for Best Master’s Thesis by the Latin American Committee of Mathematics Education (CLAME).

He also has experience as a mathematics teacher at both university and secondary education levels (diversified cycle, International Baccalaureate, MATEM, and department coordinator). At the university level, he has worked at UCR, UNED, and UNA, teaching service courses as well as mathematical and didactic components in teacher education programs.

In addition, he has served as a presenter at several major international conferences, including the International Congress on Mathematical Education (ICME), the Congress of the European Society for Research in Mathematics Education (CERME), the Conference of the International Group for the Psychology of Mathematics Education (PME), and the Latin American Meeting on Mathematics Education (RELME).

Brahiam Ramírez, Pontificia Universidad Católica de Valparaíso

Mathematics educator and doctoral student in Didactics of Mathematics at the Pontificia Universidad Católica de Valparaíso, Chile.

Marcerla Parraguez González, Pontificia Universidad Católica de Valparaíso

PhD in Educational Mathematics and Full Professor at the Pontificia Universidad Católica de Valparaíso, Chile.

References

Ahmed, I., Liu, W., Roscoe, R. D., Reilley, E. y McNamara, D. S. (2025). Multifaceted assessment of responsible use and bias in language models for education. Computers, 14(3), 1–12. https://doi.org/10.3390/computers14030100

Beel, J., Gipp, B., Langer, S. y Breitinger, C. (2016). Research–paper recommender systems: A literature survey. International Journal on Digital Libraries, 17(4), 305–338. https://doi.org/10.1007/s00799–015–0156–0

Bekker, M. (2024). Large language models and academic writing: Five tiers of engagement. South African Journal of Science, 120(1/2), 1–5. https://doi.org/10.17159/sajs.2024/17147

Bender, E. M., Gebru, T., McMillan–Major, A. y Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 610–623). Association for Computing Machinery. https://doi.org/10.1145/3442188.3445922

Bista, K. y Bista, R. (2025). Leveraging AI tools in academic writing: Insights from doctoral students on benefits and challenges. American Journal of STEM Education: Issues and Perspectives, 6, 32–47. https://doi.org/10.32674/9m8dq081

Bouzar, A., El Idrissi, K. y Ghourdou, T. (2024). ChatGPT and academic writing self–efficacy: Unveiling correlations and technological dependency among postgraduate students. Arab World English Journal, 15, 225–236. https://doi.org/10.24093/awej/chatgpt.15

Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27–40. https://doi.org/10.3316/QRJ0902027

Butson, R. y Spronken–Smith, R. (2024). AI and its implications for research in higher education: A critical dialogue. Higher Education Research & Development, 43(3), 563–577. https://doi.org/10.1080/07294360.2023.2280200

Calle–Arango, L. y Ávila Reyes, N. (2023). Obstacles, facilitators, and needs in doctoral writing: A systematic review. Studies in Continuing Education, 45(2), 133–151. https://doi.org/10.1080/0158037X.2022.2026315

Castañeda, A. y Sánchez, M. (2025). ¿Se vale usar ChatGPT si igual entendí el tema? Una conversación urgente sobre IA en el aula. Revista Enseñanza de las Matemáticas y Experiencias Docentes, 1(2), 9–14. https://doi.org/10.24844/REMED/0102.00

Chen, Y.C. (2019). Writing as an epistemological tool: Perspectives from personal, disciplinary, and sociocultural landscapes. En V. Prain y B. Hand (Eds.), Theorizing the future of science education research (pp. 115–132). Springer. https://doi.org/10.1007/978–3–030–24013–4_8

Cordón, Ó. (2023). Inteligencia artificial en educación superior: Oportunidades y riesgos. Revista Interuniversitaria de Investigación en Tecnología Educativa, 15, 16–27. https://doi.org/10.6018/riite.591581

Cox, A. (2024). Algorithmic literacy, AI literacy and responsible generative AI literacy. Journal of Web Librarianship, 18(3), 93–110. https://doi.org/10.1080/19322909.2024.2395341

Delgadillo, I. y Beel, J. (2019). Towards reproducible research in recommender systems for research papers. Proceedings of the 13th ACM Conference on Recommender Systems, 498–502. https://doi.org/10.1145/3298689.3347043

Dempere, J., Modugu, K. y Ramasamy, L. (2023). The impact of ChatGPT on higher education. Frontiers in Education, 8, 1–13. https://doi.org/10.3389/feduc.2023.1206936

Flick, U. (2018). An introduction to qualitative research (6th ed.). SAGE Publications.

Fuchs, K. (2023). Exploring the opportunities and challenges of NLP models in higher education: ¿Is ChatGPT a blessing or a curse? Frontiers in Education, 8, 1–4. https://doi.org/10.3389/feduc.2023.1166682

Hutson, J. (2024). Rethinking plagiarism in the era of generative AI. Journal of Intelligent Communication, 3(2), 20–31. https://doi.org/10.54963/jic.v3i2.220

Jain, S., Kumar, A., Roy, T., Shinde, K., Vignesh, G. y Tendulkar, R. (2024). SciSpace literature review: Harnessing AI for effortless scientific discovery. En N. Goharian, N. Tonellotto, Y. He, A. Lipani, G. McDonald, C. Macdonald y I. Ounis (Eds.), Advances in Information Retrieval (pp. 256–260). Springer. https://doi.org/10.1007/978–3–031–56069–9_28

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y. J., Madotto, A. y Fung, P. (2023). Survey of hallucination in natural language generation. ACM Computing Surveys, 55(12), 1–38. https://doi.org/10.1145/3571730

Karakose, T. (2023). The utility of ChatGPT in educational research—Potential opportunities and pitfalls. Educational Process: International Journal, 12(2), 7–13. https://doi.org/10.22521/edupij.2023.122.1

Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeiffer, J., Sailer, M., Schmidt, A., Sedlmeier, P., Spinner, B., … Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, Article 102274. https://doi.org/10.1016/j.lindif.2023.102274

Lee, S. S. y Moore, R. L. (2024). Harnessing generative AI for automated feedback in higher education: A systematic review. Online Learning, 28(3), 82–105. https://files.eric.ed.gov/fulltext/EJ1446868.pdf

Maynez, J., Narayan, S., Bohnet, B. y McDonald, R. (2020). On faithfulness and factuality in abstractive summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 1906–1919). Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.acl–main.173

Mugaanyi, J., Sekajja, S. y Ndagire, S. (2024). Evaluation of large language model performance and reliability for citations and references in scholarly writing: Cross–disciplinary study. Journal of Medical Internet Research, 26, e52935. https://doi.org/10.2196/52935

Nava-Guzmán, C. (2025). La inteligencia artificial generativa en la enseñanza de las matemáticas. Revista Enseñanza de las Matemáticas y Experiencias Docentes, 1(2), 77–89. https://doi.org/10.24844/REMED/0102.05

Nguyen, A., Hong, Y., Dang, B. y Huang, X. (2024). Human–AI collaboration patterns in AI–assisted academic writing. Studies in Higher Education, 49(5), 847–864. https://doi.org/10.1080/03075079.2024.2323593

Nguyen, T. Y. P., Nguyen, N. T. y Phan, N. K. H. (2025). The challenges of applying ChatGPT in the academic writing of postgraduate students in English major at IUH. International Journal of AI in Language Education, 2(1), 45–58. https://doi.org/10.54855/ijaile.25212

Oates, A. y Johnson, D. (2025). ChatGPT in the classroom: Evaluating its role in fostering critical–evaluation skills. International Journal of Artificial Intelligence in Education, 35(1), 45–68. https://doi.org/10.1007/s40593–024–00452–8

OpenAI (2024). ChatGPT (Aug 3 version) [Modelo de lenguaje]. https://chat.openai.com/

Pavlova, N. H. (2024). Flipped dialogic learning method with ChatGPT: A case study. International Electronic Journal of Mathematics Education, 19(1), Article em0764. https://doi.org/10.29333/iejme/14025

Rababah, L. M., Rababah, M. A. y Al–Khawaldeh, N. N. (2024). Graduate students’ ChatGPT experience and perspectives during thesis writing. International Journal of Engineering Pedagogy (iJEP), 14(3), 22–35. https://doi.org/10.3991/ijep.v14i3.48395

Ramírez, B., Morales–Reyes, J. L. y Parraguez, M. (2025). Pauta para la declaración del uso ético y responsable de la inteligencia artificial en investigaciones realizadas por estudiantes universitarios. Manuscrito sometido para publicación.

Román–Acosta, D., Rodríguez Torres, E., Baquedano, M. B., López, L. C. y Pérez, A. (2024). ChatGPT and its use to improve academic writing in postgraduate students. Praxis Pedagógica, 24(36), 53–75. https://doi.org/10.26620/uniminuto.praxis.24.36.2024.53–75

Sánchez, E., Sánchez, M., García, M., Aguayo, L., Valenzuela, C. y Chávez, Y. (2025). Ensayos y revisiones de literatura en Educación Matemática: Caracterización y criterios de evaluación. Educación Matemática, 37(1), 5–8. https://doi.org/10.24844/EM3701.00

Stake, R. E. (2020). Investigación con estudio de casos (6ª ed.). Ediciones Morata.

Suárez–Pizzarello, M., Sánchez–Trujillo, M. D. L. A. y Rodríguez Flores, E. A. (2024). Exploring ChatGPT–4 as an academic assistant in thesis development: A case study on postgraduate higher education. Proceedings of the 2024 IEEE 4th International Conference on Advanced Learning Technologies on Education & Research (ICALTER) (pp. 1–4). IEEE. https://doi.org/10.1109/ICALTER65499.2024.10819226

Sulisworo, D. (2023). Exploring research idea growth with Litmap: Visualizing literature review graphically. Bincang Sains Dan Teknologi, 2(2), 48–54. https://doi.org/10.56741/bst.v2i02.323

Susnjak, T. y McIntosh, T. R. (2024). ChatGPT: The end of online exam integrity? Education Sciences, 14(6), 1–20. https://doi.org/10.3390/educsci14060656

Tran, T. T. P., Dang, T. N. y Nguyen, V. L. P. (2025). Master students’ perceptions of how ChatGPT influenced critical thinking in academic writing at the Industrial University of Ho Chi Minh City. International Journal of AI in Language Education, 2(2), 20–39. https://doi.org/10.54855/ijaile.25222

Vivas.AI. (2024). Mastering prompt engineering: A guide to the CO–STAR and TIDD–EC frameworks. Medium. https://vivasai01.medium.com/mastering-prompt-engineering-a-guide-to-the-co-star-and-tidd-ec-frameworks-3334588cb908

Wahba, F., Ajlouni, A. O. y Abumosa, M. A. (2024). The impact of ChatGPT-based learning statistics on undergraduates’ statistical reasoning and attitudes toward statistics. Eurasia Journal of Mathematics, Science and Technology Education, 20(7), Article em2468. https://doi.org/10.29333/ejmste/14726

Wang, J., Liardét, C. y Lum, J. (2025). Feeling like an academic writer: An exploration of doctoral students’ struggle for recognition. Studies in Continuing Education, 47(1), 285–301. https://doi.org/10.1080/0158037X.2024.2358006

Zapata–Ros, M. (2018). La universidad inteligente: La transición de los LMS a los sistemas inteligentes de aprendizaje en educación superior. Revista de Educación a Distancia, 57(10), 1–43. http://dx.doi.org/10.6018/red/57/10

Published

2025-12-31

How to Cite

Morales Reyes, J. L., Ramírez, B., & Parraguez González, M. (2025). Methodological Proposal for AI–Assisted Academic Writing: The CO–STAR Framework. Chilean Journal of Mathematics Education, 17(3), 103–122. https://doi.org/10.46219/rechiem.v17i3.206

Issue

Section

Artículos de investigación